'Topping Up' Wheat with Foliar P Does it Work?

Therese McBeath, Evelina Facelli, Courtney Peirce, Mike McLaughlin, Ed Hunt and Daniela Montalvo

MORE PROFIT FROM CROP NUTRITION Supported by GRDC Grains Research & Development Corporation

Project rationale

- *P* fertiliser is a major input and putting it all 'up-front' increases the risk of the P investment
- Crop demand for P varies according to in-season rainfall=In-season supply and application
- Maintenance P management strategies = reduced starter inputs
- Can we reduce starter P in grain cropping and develop a "tactical" P fertilisation regime (similar to topdressed N)?
- Scoping suggested variability in responses but phosphoric acid (PA) the most likely candidate P source
- Farmers have started to use PA for foliar P top ups
- Does it really work?

MORE PROFIT FROM Judition Judition MORE PROFIT FROM Judition

Previous reports showed •Variable responses to foliar P •Phosphoric acid appears a more effective source of P

McBeath, T. M.; McLaughlin, M. J.; Noack, S. R., Wheat grain yield response to and translocation of foliar-applied phosphorus. *Crop and Pasture Science* 2011, 62, 58-65.

Project background

 Multi-disciplinary- soil and physical chemists, plant physiologists, agronomists and consultants

- What level of plant fertility?
- What adjuvant to use?
- When to apply?
- Field evaluation
- What level of soil fertility?
- What combination of P source and adjuvant?

Factors that affect efficiency

Plant-related factors

- Leaf wettability
- Leaf surface morphology

- Crop surface cover
- Crop growth stage & nutritional status

What level of P fertility?

- Does a wheat leaf change with P nutritional status?
- Does this affect the foliar uptake of P?

CSIRO Flagship Collaboration Fellowship Fernández V, et al. 2014 Plant Soil, 384:7-20

What level of P fertility?

Soil P added (kg P/ha)	Stomata per mm²	Trichomes per mm²	Contact angle of water (°)	Foliar P absorption (%)	Foliar P translocated from treated leaf (%)
24	77	59	143	10 c	33 b
8	55	41	139	5 b	35 b
0	36	5	123	0.a	0 a
Fernandez et	al. 2014 P	24 Plant and Sol	il, 384:7-20	8 Severely defic will not take u	cient leaves p foliar P

What to apply?

- Contact angle measurements of water and fertilisers on wheat leaves
 - GS early booting to early ear emergence
 - Concentrations ranging from 0.01 0.3 % w v⁻¹
 - Adjuvants:
 - Agral® (Active ingredient: 63% nonyl phenol ethylene oxide condensate)
 - LI 700[®] (Active ingredients: 35% w v⁻¹ soyal phospholipids, 35% w v⁻¹ propionic acid)
 - Genapol® X-080 (Polyethylene glycol monoalkyl ether)

What to apply?

Adjuvants and uptake of foliar P

- Adjuvants
 - Agral[®] (label rate)
 - LI 700[®] (label rate)
 - Genapol[®] X-080 (0.1% w v⁻¹)
- 1.9 % P w v⁻¹ foliar applied PA
- ³³P tracer added to fertilisers application at two growth stages
 - Tillering GS22 or
 - Early booting GS41
- Harvested at maturity
 - Plant separated into parts after washing to measure translocation from treated area

- 79 % of the foliar fertiliser was adsorbed and/or absorbed by the leaves with 24-57 % redistributed within the plant
- Higher translocation to grain with a later application

0 -							
	Agral	Genapol	LI700	Agral	Genapol	LI700	
	GS22			GS41			

- Wheat leaves are difficult to wet without adjuvants
- Contact angle of fertilisers vary with different adjuvants BUT
- Uptake (>80%) of P does not vary for different adjuvants with PA
- More P translocated to grain when applied later

- Foliar P that hits ground is likely to be ineffective (topdressed P)
- Surface cover controls maximum possible interception (efficacy) of foliar P
- Canopy closure and peak P demand intersect near booting

Wheat P and leaf area index (LAI) at different growth stage (GS)

MORE PROFIT FF CROP NUTRITION supported by GRDC Grains Resea

Foliar PA applied at booting caused a biomass and P uptake response 10 days after application

MORE PROFIT FRO

Response to timing of application of PA not measurable at maturity

supported by

GRDC Grains Research & Development Corporation

- Transient effect on shoot dry weight and P uptake when foliar P applied at booting
- No effect on biomass or grain yield at maturity in this soil
- Trade-offs between convenience/ logistics and maximal recovery

Field evaluation of when, what and

how much?

Location	Soil type	Soil P status	Sowing P kg/ha	Foliar P kg/ha	Adjuvants	Grain yield t/ha	
Replicated small plots							
Edillilie	Ironstone	Marginal	0, 15, 30	0, 1.5, 3	L1700®,	3.5±0.2	
Lock	Silic. sand	Marginal	10	0, 1.5, 3	Hasten®,	2.7±0.2	
Cummins	Deep clay	Deficient	15	0, 1.5, 3	Superstick®	8.0±0.2	
Replicated paddock strips							
Nhill	Crack. clay	Marginal	0, 12	0, 0.95	L1700®	3.3±0.3	
Natimuk	Crack. clay	Adequate	0, 11	0, 0.95		2.2±0.4	
Paddock demo strips							
Lock	Calc. sand	Marginal	10	0, 3	<i>L1700</i> ®	2.9±0.2	
Dimboola	Crack. clay	Deficient	0, 5	0, 0.95	Spreadwet®	1.8±0.2	
Telangatuk	Duplex	Marginal	0, 6, 11	0, 0.95	<i>L1700</i> ®	2.4±0.2	
Kaniva	Crack. clay	NA	6, 12	0, 0.95	L1700®	2.0±0.2	

Field evaluation of when, what and how much?

Lock

What level of P fertility?

In all cases, the relationship between anthesis dry weight and sowing applied P did not significantly differ between different inputs of foliar applied P

16

What to apply?

Formulations	Formulation pH	N	Р	K		
		% w/w				
Phosphoric acid	1.3	0	26.9	0		
Ammonium phosphate AR	4.3	12.2	27	0		
Maxi Phos Neutral	4.3	7.8	12.5	0		
Ammonium polyphosphate	6.6	16	23	0		
PeKacid	2.2	8	22	16.6		
Sodium phosphate AR	6.5	0	22.5	0		
Potassium phosphate AR	4.4	0	22.8	28.7		
Pick	8.7	0	9.4	26.3		
Adjuvants						
L1700 [®]	Acidifying, penetrating surfactant					
Hasten®	Esterified vegetable oil, non-ionic surfactant					
Spreadwet1000®	Non-ionic surfactant					

MORE PROFIT FROM CROP NUTRITION VECTORY GRDC Cased Research 4

What to apply?

C control (no foliar fertiliser); H Hasten; L LI700; S Spreadwet 1000. * Significantly different from the control (P≤0.05, LSD 0.33).

Conclusions

- The fertiliser needs to stick to the leaf for uptake, you need an adjuvant
- Foliar P recovery appears better when applied at a later growth stage (flag leaf emergence to mid-boot)
- Achieving consistent responses to foliar P remains a challenge but recent formulation testing gives some direction for 2015 field testing.

Acknowledgements

Funding: GRDC Fluid Fertilizer Foundation CSIRO

Adelaide Microscopy

Technical assistance: Bogumila Tomczak Colin Rivers Ashleigh Broadbent Craig Priest Bill Davoren Bob Holloway Hasbullah Olivia Gelioli Tanja Lenz Collaborators: Mark Modra EP Stuart Modra EP Andrew Polkinghorne EP Tom Dunstan W Chris Smith W Nick Pietsch W Nodney Pohlner W Stephen Hobbs W Malcolm Eastwood W John McDougall W George Brudette W

James Easton WA Bill Gardner W George Pedler EP

Organisations leading projects

Department of Primary Industries

Department of Agriculture and Food

PERTH, WESTERN AUSTRALIA

INTERNATIONAL PLANT NUTRITION INSTITUTE

THE UNIVERSITY OF Western Australia

Queensland

Department of Environment and Primary Industries

CSIRO

Government

University of New England

RESEARCH AND Government DEVELOPMENT of South Australia

Soil P response curves

Something about methodology

Boom spray

MORE PROFIT FRO GRDC Grains Resea

MORE PROFIT FROM MORE PROFIT FROM AUDONOLUTION AUDONOLU

Where to now?

- Careful spatial evaluation of in-season and maturity responses from 2014
- Field testing of formulations in 2015
- Can we get to the bottom of the transience in response?
- Mechanisms of scorch is it a problem or a solution?